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Asymmetric synthesis of pent-3-yl
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Abstract—An expeditious asymmetric synthesis of pent-3-yl (R)-6-methyl-cyclohex-1-enecarboxylate has been achieved in four steps in
42% overall yield employing as the key step a domino reaction initiated by a highly diastereoselective lithium amide 1,4-conjugate addi-
tion to a nona-2,7-diendioic diester followed by a 6-exo-trig cyclisation of the thus formed enolate. Cope elimination protocol of the
cyclic adduct affords, depending on the lithium amide used, the corresponding nitro-compound or the expected cyclohexene derivative.
The methyl group attached to the cyclohexane ring is achieved by selective ester hydrolysis and subsequent Barton decarboxylation.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The methodologies and strategies for the stereoselective
construction of substituted cyclohexane rings are very pow-
erful synthetic tools since such rings are incorporated in
many naturally occurring products. Representative exam-
ples are: morphine1 with a cyclohexane ring trans,trans-
trisubstituted and luciduline2 where the ring is cis,cis-tri-
substituted. Pumiliotoxin C with a cis-decahydroquinoline
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Scheme 1.
skeleton, first isolated from Dendrobates pumilio, is one of
the most prominent members among the alkaloids isolated
from Dendrobates spp. (poison dart frog).3 An impressive
effort has been devoted to the asymmetric synthesis
because of its structure, a cis-fused perhydroquinoline
skeleton featuring four stereogenic centres.4 In Scheme 1
are shown some of the cyclohexanic derivatives used
recently in the asymmetric synthesis of pumiliotoxin C,
and the related compound pent-3-yl (R)-6-methyl-cyclo-
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Scheme 2. Reagents and conditions: (i) lithium (R)-N-benzyl-N-a-
methylbenzylamide [(R)-5, 1.6 equiv, THF, �78 �C]; (ii) lithium (R)-N-
benzyl-N-a-methylbenzylamide [(R)-5, 12 equiv, THF, �78 �C].
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Scheme 3. Reagents and conditions: (i) m-CPBA (4 equiv), 3 days.
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hex-1-enecarboxylate ester (R)-1, whose synthesis is re-
ported here.

We have previously demonstrated the asymmetric synthesis
of the cyclic monoaddition and open chain diaddition
products 2 and 3 from (E,E)-nona-2,7-diendioate 4a–d
(Scheme 2).5 The cyclic adduct 2 is obtained by addition
of homochiral lithium N-benzyl-N-a-methylbenzylamide
(R)-5 (1.6 equiv) via a domino6 reaction initiated in an
asymmetric conjugate addition followed by an intramolec-
ular 6-exo-trig cyclisation of the enolate formed with the
remaining a,b-unsaturated ester. On the other hand, addi-
tion of (E,E)-deca-2,8-diendioate to an excess of lithium
amide gave the diaddition adduct as the only isolated prod-
uct.5 However addition of methyl (E,E)-nona-2,7-diendio-
ate 4a to an excess of amide (R)-5 (12 equiv) gave the
diaddition adduct (3R,7R)-3 and cyclic 2a in a 3:2 ratio.
Nevertheless, compound (3R,7R)-3, has been obtained
completely selectively in a strategy based on (Z,E)-nona-
2,7-diendioate by reaction with (R)-5 producing the
b,c-unsaturated monoaddition product, which by base
catalysed isomerisation to the a,b-unsaturated ester and
new addition, yields (3R,7R)-3. In this way, meso-3 could
be obtained as well when (S)-5 is added to the monoaddi-
tion derivative.5a This sequential strategy allows the stereo-
chemical control of the two new stereogenic centres.

In order to demonstrate further the versatility of this
lithium methodology by generating chiral methyl cyclohex-
ane derivatives, a study with sequential amine elimination,
selective ester hydrolysis and Barton’s decarboxylation on
4d was undertaken.
2. Results and discussion

We envisaged that Cope elimination between H-1 and the
amino group in the cyclohexane compound
(1R,2R,6R,aR)-2a (Scheme 3) would provide the alkene
derivative in accordance with previous observations in the
cyclopentane series.7 However, treatment of compound
(1R,2R,6R,aR)-2a with m-chloroperbenzoic acid over a
long period of time generated, the nitro derivative
(1R,2R,6R)-6, in 53% isolated yield8 as a single diastereoiso-
mer. Presumably with all groups especially the large amino
group equatorial in the trisubstituted chair conformation of
the cyclohexane, in the N-oxide initially formed 7. It is dif-
ficult to adopt the syn-periplanar conformation required to
generate a cyclohexene derivative, favouring Cope elimina-
tion with a hydrogen from the a-methyl group yielding styr-
ene and the hydroxy-amine 8. Subsequent dehydration and
further oxidation would produce an N-oxide oxaziridine
derivative, rearrangement of which would give benzalde-
hyde and a nitroso compound, which after additional
oxidation would account for the production of
(1R,2R,6R)-6.9 Due to this unexpected result10 and the
versatility of the nitro group that can, for example, be trans-
formed to carbonyl functionality through a Nef reaction,11

further investigations on the scope of this reaction are
currently being performed in our laboratory.

The less bulky chiral lithium (S)-N-methyl-N-a-methyl-
benzylamide (S)-9, has been demonstrated previously to
favour Cope eliminations.12 Addition of dipent-3-yl
(E,E)-nona-2,7-diendioate 4d to (S)-9 (1.8 equiv) at
�78 �C followed by quenching with saturated aqueous
ammonium chloride gave the readily separable, by flash
chromatography (silica; 5% EtOAc in hexane), cyclohexane
adduct (1S,2S,6S,aS)-10,8 ½a�20

D ¼ �2:5 (c 1.4, CHCl3), to-
gether with the diaddition adduct (3S,7S)-11 in 65% and
10% isolated yields, respectively (Scheme 4). This result
suggests that the ratio of adducts obtained, depends not
only on the amount but also on the size of the lithium
amide used. Thus slow addition of (S)-9 to 4d at �78 �C
provided (1S,2S,6S,aS)-10 as the only isolated compound
in 80% yield.

Oxidation of (1S,2S,6S,aS)-10 with m-chloroperbenzoic
acid (Scheme 4) generated the expected cyclohexene
derivative (S)-12, ½a�20

D ¼ þ11:5 (c 0.6, CHCl3), together
with the hydroxylamines (1S,2S,6S)-13 and (S)-14, in
65%, 17% and 75% yields, respectively. The hydroxylamine
14 derives from the expected Cope elimination of the
trans-b amino ester moiety within (1S,2S,6S,aS)-10 whereas
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Scheme 4. Reagents and conditions: (i) (S)-(N-methyl-N-a-methylbenzyl-
amide [(S)-9, 1.8 equiv, THF, �78 �C]; (ii) (S)-(N-methyl-N-a-meth-
ylbenzylamide [(S)-9, 1.2 equiv, THF, �78 �C]; (iii) m-CPBA (2.2 equiv),
18 h.
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hydroxylamine (1S,2S,6S)-13 derives from elimination in
the a-methylbenzyl moiety.

Selective ester hydrolysis of (S)-12 and (1S,2S,6S,aS)-10
with LiOHÆH2O in MeOH/THF/H2O afforded, respec-
tively (S)-16 and (1S,2S,6S,aS)-158 in quantitative and
79% yields, respectively (Scheme 5). To generate a methyl
group attached to the cyclohexane ring, both compounds
were subjected to Barton’s thiohydroxamic ester radical
decarboxylation protocol,13,14 providing efficiently in the
first case, (R)-1 with 82% isolated yield after flash chroma-
tography, ½a�20

D ¼ þ46:0 (c 0.5, CHCl3), and (1S,2S,6R)-17,
in the second ½a�20

D ¼ �6:2 (c 0.7, CHCl3), in 51% isolated
yield. Similarly, when (1S,2S,6R)-17 was subjected to the
Cope elimination protocol described before, (R)-1 was
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Scheme 5. Reagents and conditions: (i) m-CPBA (2.2 equiv); (ii)
LiOHÆH2O, MeOH/THF/H2O 3:1:1; (iii) 2,2 0-dithiopyridine-1,1 0-di-N-
oxide, PPh3, tBuSH, hm.
obtained in 46% isolated yield after column chromatogra-
phy, together with the related cyclohexanyl hydroxyl-
amine in 33% yield. The highest yielding (42% overall)
route to the final product is 4d! (1S,2S,6S,aS)-
10! (S)-12! (R)-1, gglobal = 42%.

Neither Cope elimination, ester hydrolysis or Barton decar-
boxylation involve the C-6 configuration that therefore
remains as generated in the first addition–cyclisation
reaction. In confirmation 1H NMR in the presence of the
chiral shift reagent (9-anthryl-trifluoroethanol) does not
show the splitting of the methyl group signal, which is
clearly observed when the racemic compound ethyl (±)-6-
methyl-cyclohex-3-enecarboxylate (±)-1b,15 was analysed
similarly (2:1 chiral shift reagent:substrate), and an ee
>95% can therefore be assigned for (R)-1. Importantly,
the analogous series of reactions deploying the enantio-
meric lithium amide (R)-9, in the initial conjugate addition
step will obviously allow simple access to (S)-1.
3. Conclusion

In conclusion, an expeditious synthesis of pent-3-yl (R)-6-
methyl-cyclohex-1-ene carboxylate (R)-1 in only four steps
from dipent-3-yl (E,E)-nona-2,7-diendioate 4 as the prochi-
ral precursor and in 42% overall yield was achieved. The
highly stereoselective domino reaction initiated by the Mi-
chael addition of chiral (S)-9 provide the required (R)-con-
figuration in the final product. With the cyclohexane
adduct (1S,2S,6S,aS)-10 in hand, the sequence: Cope elim-
ination, selective hydrolysis of the less steric demanding es-
ter and efficient Barton decarboxylation generates the C-6
methyl group without loss of the stereochemical integrity.

The described product can be considered a precursor of
pumiliotoxin-(C), and further investigation to this end is
underway.
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